839 research outputs found

    Elastic Tensor of Sr2_2RuO4_4

    Full text link
    The six independent elastic constants of Sr2_2RuO4_4 were determined using resonant ultrasound spectroscopy on a high-quality single-crystal specimen. The constants are in excellent agreement with those obtained from pulse-echo experiments performed on a sample cut from the same ingot. A calculation of the Debye temperature using the measured constants agrees well with values obtained from both specific heat and M\"{o}ssbauer measurements.Comment: 4 pages, 2 figures, 2 tables, submitted to PR

    Shape-based peak identification for ChIP-Seq

    Get PDF
    We present a new algorithm for the identification of bound regions from ChIP-seq experiments. Our method for identifying statistically significant peaks from read coverage is inspired by the notion of persistence in topological data analysis and provides a non-parametric approach that is robust to noise in experiments. Specifically, our method reduces the peak calling problem to the study of tree-based statistics derived from the data. We demonstrate the accuracy of our method on existing datasets, and we show that it can discover previously missed regions and can more clearly discriminate between multiple binding events. The software T-PIC (Tree shape Peak Identification for ChIP-Seq) is available at http://math.berkeley.edu/~vhower/tpic.htmlComment: 12 pages, 6 figure

    Ultrasonic attenuation in magnetic fields for superconducting states with line nodes in Sr2RuO4

    Full text link
    We calculate the ultrasonic attenuation in magnetic fields for superconducting states with line nodes vertical or horizontal relative to the RuO_2 planes. This theory, which is valid for fields near Hc2 and not too low temperatures, takes into account the effects of supercurrent flow and Andreev scattering by the Abrikosov vortex lattice. For rotating in-plane field H(theta) the attenuation alpha(theta)exhibits variations of fourfold symmetry in the rotation angle theta. In the case of vertical nodes, the transverse T100 sound mode yields the weakest(linear)H and T dependence of alpha, while the longitudinal L100 mode yields a stronger (quadratic) H and T dependence. This is in strong contrast to the case of horizontal line nodes where alpha is the same for the T100 and L100 modes (apart from a shift of pi/4 in field direction) and is roughly a quadratic function of H and T. Thus we conclude that measurements of alpha in in-plane magnetic fields for different in-plane sound modes may be an important tool for probing the nodal structure of the gap in Sr_2RuO_4.Comment: 5 pages, 6 figures, replaced in non-preprint form, to appear in Phys. Rev.

    Interlayer pair tunneling and gap anisotropy in YBa2_2Cu3_3O7βˆ’Ξ΄_{7-\delta}

    Full text link
    Recent ARPES measurement observed a large abab-axis gap anisotropy, Ξ”(0,Ο€)/Ξ”(Ο€,0)=1.5\Delta(0,\pi)/\Delta(\pi,0)=1.5, in clean YBa2_2Cu3_3O7βˆ’Ξ΄_{7-\delta}. This indicates that some sub-dominant component may exist in the dx2βˆ’y2d_{x^2-y^2}-wave dominant gap. We propose that the interlayer pairing tunneling contribution can be determined through the investigation of the order parameter anisotropy. Their potentially observable features in transport and spin dynamics are also studied.Comment: 4 pages, 3 figure

    More on FOX News: FOXA1 on the horizon of estrogen receptor function and endocrine response

    Get PDF
    Estrogen receptor Ξ± (ER) is a major driver of breast cancer and the target of endocrine therapy. Full disclosure of the cofactors regulating ER interactions with chromatin and its transcriptional regulatory activity is still elusive. Novel genome-wide profiling tools have mapped ER binding events in breast cancer cells and delineated cofactors important in ER activity. Among these, the Forkhead protein FOXA1 is emerging as a key factor dictating global chromatin structure and the transcriptional function of ER in breast and non-breast cancer cells. The significance of FOXA1 in the chromatin interactions and transcriptional regulation of both estrogen- and tamoxifen-bound ER, and in supporting tamoxifen-resistant cell growth, may impact current endocrine therapies

    Transport and the Order Parameter of Superconducting Sr2_2RuO4_4

    Full text link
    Recent experiments make it appear more likely that the order parameter of the unconventional superconductor Sr2_2RuO4_4 has a spin-triplet ff-wave symmetry. We study ultrasonic absorption and thermal conductivity of superconducting Sr2_2RuO4_4 and fit to the recent data for various ff-wave candidates. It is shown that only fx2βˆ’y2f_{x^2-y^2}-wave symmetry can account qualitatively for the transport data.Comment: 4 pages, 2 figures, references added and update

    An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates

    Full text link
    Removing electrons from the CuO2 plane of cuprates alters the electronic correlations sufficiently to produce high-temperature superconductivity. Associated with these changes are spectral weight transfers from the high energy states of the insulator to low energies. In theory, these should be detectable as an imbalance between the tunneling rate for electron injection and extraction - a tunneling asymmetry. We introduce atomic-resolution tunneling-asymmetry imaging, finding virtually identical phenomena in two lightly hole-doped cuprates: Ca1.88Na0.12CuO2Cl2 and Bi2Sr2Dy0.2Ca0.8Cu2O8+d. Intense spatial variations in tunneling asymmetry occur primarily at the planar oxygen sites; their spatial arrangement forms a Cu-O-Cu bond centered electronic pattern without long range order but with 4a0-wide unidirectional electronic domains dispersed throughout (a0: the Cu-O-Cu distance). The emerging picture is then of a partial hole-localization within an intrinsic electronic glass evolving, at higher hole-densities, into complete delocalization and highest temperature superconductivity.Comment: 28 pages, 9 figures, published version is available at http://people.ccmr.cornell.edu/~jcdavis/mK_stm/publications/domains/index.ht

    Glucocorticoids Decrease Hippocampal and Prefrontal Activation during Declarative Memory Retrieval in Young Men

    Get PDF
    Glucocorticoids (GCs, cortisol in human) are associated with impairments in declarative memory retrieval. Brain regions hypothesized to mediate these effects are the hippocampus and prefrontal cortex (PFC). Our aim was to use fMRI in localizing the effects of GCs during declarative memory retrieval. Therefore, we tested memory retrieval in 21 young healthy males in a randomized placebo-controlled crossover design. Participants encoded word lists containing neutral and emotional words 1Β h prior to ingestion of 20Β mg hydrocortisone. Memory retrieval was tested using an old/new recognition paradigm in a rapid event-related design. It was found that hydrocortisone decreased brain activity in both the hippocampus and PFC during successful retrieval of neutral words. These observations are consistent with previous animal and human studies suggesting that glucocorticoids modulate both hippocampal and prefrontal brain regions that are crucially involved in memory processing

    Electron-Phonon Interaction and Ultrasonic Attenuation in the Ruthenate and Cuprate superconductors

    Full text link
    This article derives an electron-phonon interaction suitable for interpreting ultrasonic attenuation measurements in the ruthenate and cuprate superconductors. The huge anisotropy found experimentally (Lupien et al., 2001) in Sr2RuO4 in the normal state is accounted for in terms of the layered square-lattice structure of Sr2RuO4, and the dominant contribution to the attenuation in Sr2RuO4 is found to be due to electrons in the gamma band. The experimental data in the superconducting state is found to be inconsistent with vertical lines nodes in the gap in either (100) or (110) planes. Also, a general method, based on the use of symmetry, is developed to allow for the analysis of ultrasonic attenuation experiments in superconductors in which the electronic band structure is complicated or not known. Our results, both for the normal-state anisotropy, and relating to the positions of the gap nodes in the superconducting state, are different from those obtained from analyses using a more traditional model for the electron-phonon interaction in terms of an isotropic electron stress tensor. Also, a brief discussion of the ultrasonic attenuation in UPt3 is given.Comment: 12 pages. Comments have been added to the original version of this article showing how, for the ultrasonic attenuation for a hexagonal crystal (which must be isotropic with respect to rotations about the c axis) our approach reproduces the results of the traditional isotropic electron stress tensor mode

    Inelastic neutron scattering study of magnetic excitations in Sr2_2RuO4_4

    Full text link
    Magnetic excitations in \srruo ~ have been studied by inelastic neutron scattering. The magnetic fluctuations are dominated by incommensurate peaks related to the Fermi surface nesting of the quasi-one-dimensional dxzd_{xz}- and dyzd_{yz}-bands. The shape of the incommensurate signal agrees well with RPA calculations. At the incommensurate {\bf Q}-positions the energy spectrum considerably softens upon cooling pointing to a close magnetic instability : \srruo ~does not exhibit quantum criticality but is very close to it. Ο‰/T\omega / T-scaling may be fitted to the data for temperatures above 30 K. Below the superconducting transition, the magnetic response at the nesting signal is not found to change in the energy range down to 0.4meV.Comment: 11 pages 9 figure
    • …
    corecore